Number Systems and Number Representation

Goals of these Lectures

Help you learn (or refresh your memory) about:

- The binary, hexadecimal, and octal number systems
- Finite representation of unsigned integers
- Finite representation of signed integers
- Finite representation of rational numbers (if time)

Why?

- A power programmer must know number systems and data representation to fully understand C's primitive data types

Agenda

Number Systems (Lecture 1)

Finite representation of unsigned integers (Lecture 2)
Finite representation of signed integers (Lecture 3)

The Decimal Number System

Name

- "decem" (Latin) => ten

Characteristics

- Ten symbols
- 0123456789
- Positional
- $2945 \neq 2495$
- $2945=\left(2 * 10^{3}\right)+\left(9 * 10^{2}\right)+\left(4 * 10^{1}\right)+\left(5 * 10^{0}\right)$
(Most) people use the decimal number system

The Binary Number System

Name

- "binarius" (Latin) => two

Characteristics

- Two symbols
- 01
- Positional
- $1010_{\mathrm{B}} \neq 1100_{\mathrm{B}}$

Most (digital) computers use the binary number system

Terminology

- Bit: a binary digit
- Byte: (typically) 8 bits

Decimal-Binary Equivalence

Decimal	Binary
0	0
1	1
2	10
3	11
4	100
5	101
6	110
7	111
8	1000
9	1001
10	1010
11	1011
12	1100
13	1101
14	1110
15	1111

Decimal	Binary
16	10000
17	10001
18	10010
19	10011
20	10100
21	10101
22	10110
23	10111
24	11000
25	11001
26	11010
27	11011
28	11100
29	11101
30	11110
31	11111
\cdots	\cdots

Decimal-Binary Conversion

Binary to decimal: expand using positional notation

$$
\begin{aligned}
100101_{\mathrm{B}} & =\left(1 * 2^{5}\right)+\left(0 * 2^{4}\right)+\left(0 * 2^{3}\right)+\left(1 * 2^{2}\right)+\left(0 * 2^{1}\right)+\left(1 * 2^{0}\right) \\
= & 32+0+0+0+1 \\
= & 37
\end{aligned}
$$

Decimal-Binary Conversion

Decimal to binary: do the reverse

- Determine largest power of $2 \leq$ number; write template

$$
37=\left(? * 2^{5}\right)+\left(? * 2^{4}\right)+\left(? * 2^{3}\right)+\left(? * 2^{2}\right)+\left(? * 2^{1}\right)+\left(? * 2^{0}\right)
$$

- Fill in template

$$
\begin{array}{rc}
37 \\
\frac{-32}{5} & \left(1 * 2^{5}\right)+\left(0 * 2^{4}\right)+\left(0 * 2^{3}\right)+\left(1 * 2^{2}\right)+\left(0 * 2^{1}\right)+\left(1 * 2^{0}\right) \\
\frac{-4}{1} & 100101_{B}
\end{array}
$$

Decimal-Binary Conversion

Decimal to binary shortcut

- Repeatedly divide by 2, consider remainder

$$
\begin{array}{r}
37 / 2=18 \mathrm{R} 1 \\
18 / 2=9 \mathrm{R} 0 \\
9 / 2=4 \mathrm{R} 1 \\
4 / 2=2 \mathrm{R} 0 \\
2 / 2=1 \mathrm{R} 0 \\
1 / 2=0 \mathrm{R} 1
\end{array}
$$

Read from bottom to top: 100101_{B}

The Hexadecimal Number System

Name

- "hexa" (Greek) => six
- "decem" (Latin) => ten

Characteristics

- Sixteen symbols
- 0123456789 A BCDE F
- Positional
- $A 13 D_{H} \neq 3 D A 1_{H}$

Computer programmers often use the hexadecimal number system

Decimal-Hexadecimal Equivalence

Decimal	$\frac{H e x}{0}$				
0	0				
1	1				
2	2				
3	3				
4	4				
5	5				
6	6				
7	7				
8	8				
9	9				
10	A				
11	B				
12	C				
13	D				
14	E				
15	F	$	$	$\frac{\text { Decimal }}{16}$	$\frac{\text { Hex }}{10}$
:---:	:---:				
17	11				
18	12				
19	13				
20	14				
21	15				
22	16				
23	17				
24	18				
25	19				
26	1 A				
27	1 B				
28	1 C				
29	1 D				
30	1 E				
31	1 F				

| $\frac{\text { Decimal }}{32}$ | $\frac{\text { Hex }}{20}$ |
| ---: | :--- | :--- |
| 33 | 21 |
| 34 | 22 |
| 35 | 23 |
| 36 | 24 |
| 37 | 25 |
| 38 | 26 |
| 39 | 27 |
| 40 | 28 |
| 41 | 29 |
| 42 | 2 A |
| 43 | $2 B$ |
| 44 | 2 C |
| 45 | 2 D |
| 46 | 2 E |
| 47 | 2 F |
| \cdots | \cdots |

Decimal-Hexadecimal Conversion

Hexadecimal to decimal: expand using positional notation

$$
\begin{aligned}
25_{\mathrm{H}} & =\left(2 * 16^{1}\right)+\left(5 * 16^{0}\right) \\
& =32+5 \\
& =37
\end{aligned}
$$

Decimal to hexadecimal: use the shortcut

$$
\begin{array}{r}
37 / 16=2 \operatorname{R~} 5 \\
2 / 16=0 \mathrm{R} 2
\end{array}
$$

Read from bottom to top: 25_{H}

Binary-Hexadecimal Conversion

Observation: $16^{1}=2^{4}$

- Every 1 hexadecimal digit corresponds to 4 binary digits

Binary to hexadecimal

```
1010000100111101 B
    A 1 3 D D
```

Digit count in binary number not a multiple of 4 => pad with zeros on left
Hexadecimal to binary

Discard leading zeros from binary number if appropriate

The Octal Number System

Name

- "octo" (Latin) => eight

Characteristics

- Eight symbols

```
-0 1 2 3 4 5 6 7
```

- Positional
- 1743。 $\neq 7314_{\circ}$

Computer programmers often use the octal number system

Decimal-Octal Equivalence

Decimal	Octal	Decimal	Octal
0	0	16	20
1	1	17	21
2	2	18	22
3	3	19	23
4	4	20	24
5	5	21	25
6	6	22	26
7	7	23	27
8	10	24	30
9	11	25	31
10	12	26	32
11	13	27	33
12	14	28	34
13	15	29	35
14	16	30	36
15	17	31	37

Decimal	
32	Octal
	40
34	41
35	43
36	44
37	45
38	46
39	47
40	50
41	51
42	52
43	53
44	54
45	55
46	56
47	57
\ldots	\ldots

Decimal-Octal Conversion

Octal to decimal: expand using positional notation

$$
\begin{aligned}
370 & =\left(3 * 8^{1}\right)+\left(7 * 8^{0}\right) \\
& =24+7 \\
& =31
\end{aligned}
$$

Decimal to octal: use the shortcut

$$
\begin{aligned}
31 & / 8
\end{aligned}=3 R 7
$$

Read from bottom to top: 37 。

Binary-Octal Conversion

Observation: $8^{1}=2^{3}$

- Every 1 octal digit corresponds to 3 binary digits

Binary to octal

$$
\begin{gathered}
00101000000111101_{\mathrm{B}} \\
\begin{array}{c}
1
\end{array} 2
\end{gathered} 0 \begin{gathered}
4 \\
\hline
\end{gathered}
$$

Digit count in binary number not a multiple of 3 => pad with zeros on left
Octal to binary

Discard leading zeros from binary number if appropriate

Agenda

Number Systems (Lecture 1)
Finite representation of unsigned integers (Lecture 2)
Finite representation of signed integers (Lecture 3)

Bitwise Operations

Bitwise AND

- Similar to logical AND (\&\&), except it works on a bit-by-bit manner
- Denoted by a single ampersand: \&

$$
\begin{gathered}
(1001 \& \\
0101)= \\
0001
\end{gathered}
$$

Bitwise OR

- Similar to logical OR (||), except it works on a bit-by-bit manner
- Denoted by a single pipe character: |

$$
\begin{aligned}
& (1001 \\
& 0101)= \\
& 1101
\end{aligned}
$$

Bitwise XOR

- Exclusive OR, denoted by a carat: ${ }^{\wedge}$
- Similar to bitwise OR, except that if both inputs are 1 or 0 then the result is 0

$$
\begin{aligned}
& (1001 \\
& 0101)= \\
& 1100
\end{aligned}
$$

Bitwise NOT

- Similar to logical NOT (!), except it works on a bit-by-bit manner
- Denoted by a tilde character:~

$$
\begin{gathered}
\sim 1001= \\
0110
\end{gathered}
$$

Unsigned Data Types: Java vs. C

Java has type

- int
- Can represent signed integers

C has type:

- signed int
- Can represent signed integers
- int
- Same as signed int
- unsigned int
- Can represent only unsigned integers

To understand C , must consider representation of both unsigned and signed integers

Representing Unsigned Integers

Mathematics

- Range is 0 to ∞

Computer programming

- Range limited by computer's word size
- Word size is n bits $=>$ range is 0 to $2^{n}-1$
- Exceed range => overflow

Nobel computers with gcc217

- $n=32$, so range is 0 to $2^{32}-1(4,294,967,295)$

Pretend computer

- $\mathrm{n}=4$, so range is 0 to $2^{4}-1$ (15)

Hereafter, assume word size $=4$

- All points generalize to word size $=32$, word size $=n$

Representing Unsigned Integers

On pretend computer

$\frac{\text { Unsigned }}{\text { Integer }}$	
0	$\frac{\text { Rep }}{0000}$
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001
10	1010
11	1011
12	1100
13	1101
14	1110
15	1111

Adding Unsigned Integers

Addition

Start at right column Proceed leftward Carry 1 when necessary

Beware of overflow

Results are mod 2^{4}

Subtracting Unsigned Integers

Subtraction

Start at right column
Proceed leftward
Borrow 2 when necessary

Beware of overflow

Results are mod 2^{4}

Shift Left

- Move all the bits N positions to the left, subbing in N Os on the right

Shift Left

- Move all the bits N positions to the left, subbing in N Os on the right

Shift Left

- Move all the bits N positions to the left, subbing in N Os on the right

$$
\begin{aligned}
& 1001 \ll 2= \\
& 100100
\end{aligned}
$$

Shift Left

- Useful as a restricted form of multiplication
- Question:how?

$$
\begin{aligned}
& 1001 \ll 2= \\
& 100100
\end{aligned}
$$

Shift Left as Multiplication

- Equivalent decimal operation:

234

Shift Left as Multiplication

- Equivalent decimal operation:

$$
\begin{aligned}
& 234 \ll 1= \\
& 2340
\end{aligned}
$$

Shift Left as Multiplication

- Equivalent decimal operation:

$$
\begin{aligned}
& 234 \ll 1= \\
& 2340 \\
& 234 \ll 2= \\
& 23400
\end{aligned}
$$

Multiplication

- Shifting left N positions multiplies by (base) ${ }^{\mathrm{N}}$
- Multiplying by 2 or 4 is often necessary (shift left I or 2 positions, respectively)
- Often a whooole lot faster than telling the processor to multiply

$$
\begin{aligned}
& 234 \ll 2= \\
& 23400
\end{aligned}
$$

Shift Right

- Move all the bits N positions to the right, subbing in either N Os or N 1s on the left
- Two different forms

Shift Right

- Move all the bits N positions to the right, subbing in either N Os or N (whatever the leftmost bit is)s on the left
- Two different forms

$$
\begin{aligned}
& 1001 \gg 2= \\
& \text { either } 0010 \text { or } 1110
\end{aligned}
$$

Shift Right as Division

- Question: If shifting left multiplies,what does shift right do?
- Answer: divides in a similar way, but truncates result

Shift Right as Division

- Question: If shifting left multiplies, what does shift right do?
- Answer: divides in a similar way, but truncates result

234

Shift Right as Division

Question: If shifting left multiplies, what does shift right do?

- Answer: divides in a similar way, but truncates result

$$
\begin{aligned}
& 234 \gg 1= \\
& 23
\end{aligned}
$$

Shifting Unsigned Integers

Bitwise right shift (>>): fill on left with zeros

$$
\begin{array}{|cc|}
\hline 10 \gg & 1 \Rightarrow>5 \\
\hline 1010_{B} & 0101_{B} \\
\hline 10 \gg & 2 \Rightarrow>2 \\
\hline 1010_{B} & 0010_{B} \\
\hline
\end{array}
$$

Bitwise left shift (<<): fill on right with zeros

$$
\begin{array}{|l}
\hline 5 \ll 1 \Rightarrow>10 \\
\hline 0101_{B} \\
\hline 3 \ll 2=>12 \\
\hline 0011_{B} \quad 1100_{B} \\
\hline
\end{array}
$$

Results are mod 2^{4}

Other Operations on Unsigned Ints

Bitwise NOT (~)

- Flip each bit

$$
\begin{aligned}
& \sim 10 \Rightarrow 5 \\
& 1010_{\mathrm{B}} \quad 0101_{\mathrm{B}}
\end{aligned}
$$

Bitwise AND (\&)

- Logical AND corresponding bits

10	1010_{B}		
$\& 7$	$\& 0111_{\mathrm{B}}$		
--	----		
2	0010_{B}	\quad	Useful for setting
:---			
selected bits to 0			

Other Operations on Unsigned Ints

Bitwise OR: (|)

- Logical OR corresponding bits

10	1010_{B}	
1	1	1
--	----	
11	10011_{B}	

Useful for setting selected bits to 1

Bitwise exclusive OR (^)

- Logical exclusive OR corresponding bits

10	1010_{B}
\wedge	\wedge
10	1010_{B}
--	---
0	0000_{B}

$x^{\wedge} \mathrm{x}$ sets
all bits to 0

The binary XOR operation will always produce a 1 output if either of its inputs is $\mathbf{1}$ and will produce a $\mathbf{0}$ output if both of its inputs are $\mathbf{0}$ or $\mathbf{1}$.

Aside: Using Bitwise Ops for Arith

Can use <<, >>, and \& to do some arithmetic efficiently
x * $2^{y}=x \ll y$
$\cdot 3 * 4=3 * 2^{2} \underset{0011_{\mathrm{B}}}{3} \ll 2 \Rightarrow{ }_{1100_{\mathrm{B}}}^{12}$
x / $2^{\mathrm{y}}=\mathbf{x} \gg \mathrm{y}$
$\cdot 13 / 4=13 / 2^{2}=\underset{1101_{B}}{13 \gg 2} 2 \underset{0011_{B}}{>}$
x 응 $2^{y}=x \&\left(2^{y}-1\right)$

- $13 \% 4=13 \% 2^{2}=13 \&\left(2^{2}-1\right)$
= 13\&3 => 1

Fast way to multiply by a power of 2

Fast way to divide by a power of 2

Fast way to mod by a power of 2

13	1101_{B}
$\& 3$	$\& 0011_{B}$
--	----
1	0001_{B}

Two Forms of Shift Right

- Subbing in 0s makes sense
- What about subbing in the leftmost bit?
- And why is this called "arithmetic" shift right?

1100 (arithmetic) >> 1 = 1110

Answer... Sort of

- Arithmetic form is intended for numbers in two's complement (next lecture), whereas the non-arithmetic form is intended for unsigned numbers

Agenda

Number Systems (Lecture 1)
Finite representation of unsigned integers (Lecture 2)
Finite representation of signed integers (Lecture 3)

Signed Magnitude

$\frac{\text { Integer }}{}$	$\frac{\text { Rep }}{1111}$
-6	1110
-5	1101
-4	1100
-3	1011
-2	1010
-1	1001
-0	1000
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111

Definition

High-order bit indicates sign
0 => positive
1 => negative
Remaining bits indicate magnitude

$$
\begin{aligned}
& 1101_{\mathrm{B}}=-101_{\mathrm{B}}=-5 \\
& 0101_{\mathrm{B}}=101_{\mathrm{B}}=5
\end{aligned}
$$

Sign
Magnitude Bits

Signed Magnitude (cont.)

$\frac{\text { Integer }}{-7}$	$\frac{\text { Rep }}{1111}$
-6	1110
-5	1101
-4	1100
-3	1011
-2	1010
-1	1001
-0	1000
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111

Computing negative

$\operatorname{neg}(x)=$ flip high order bit of x
$\operatorname{neg}\left(0101_{B}\right)=1101_{B}$
$\operatorname{neg}\left(1101_{B}\right)=0101_{B}$

Pros and cons

+ easy for people to understand
+ symmetric
- two reps of zero
- one of the bit patterns is wasted.
- addition doesn't work the way we want it to.

Signed Magnitude (cont.)

Problem \#1: "The Case of the Missing Bit Pattern":

How many possible bit patterns can be created with 4 bits?
Easy, we know that's 16. In unsigned representation, we were able to represent 16 numbers: $0,1,2,3,4,5,6,7,8,9,10,11,12,13,14$, and 15.

But with signed magnitude, we are only able to represent 15 numbers: $-7,-6,-5$, $-4,-3,-2,-1,0,1,2,3,4,5,6$, and 7 .

There's still 16 bit patterns, but one of them is either not being used or is duplicating a number. That bit pattern is '1000B'.

When we interpret this pattern, we get '-0' which is both nonsensical (negative zero? come on!) and redundant (we already have '0000B' to represent 0).

Signed Magnitude (cont.)

Problem \#2: "Requires Special Care and Feeding": Remember we wanted to have negative binary numbers so we could use our binary addition algorithm to simulate binary subtraction. How does signed magnitude fare with addition? To test it, let's try subtracting 2 from 5 by adding 5 and -2 . A positive 5 would be represented with the bit pattern '0101B' and -2 with '1010B'. Let's add these two numbers and see what the result is:

$$
\begin{array}{r}
0101 \\
+1010 \\
-------111
\end{array}
$$

Now we interpret the result as a signed magnitude number. The sign is ' 1 ' (negative) and the magnitude is ' 7 '. So the answer is a negative 7. But, wait a minute, 5-2=3! This obviously didn't work.

Conclusion: signed magnitude doesn't work with regular binary addition algorithms.

One's Complement

Integer	Rep	Definition
-7	1000	High-order bit has weight -7 (-2 $\left.2^{n}+1\right)$
-6	1001	High-order bit has weight $-7(-2+1)$
-5	1010	$1010_{\mathrm{B}}=(1 *-7)+(0 * 4)+(1 * 2)+(0 * 1)$
-3	1100	$=-5$
-2 -1	1101 1110	$0010_{B}=(0 *-7)+(0 * 4)+(1 * 2)+(0 * 1)$
-0	1111	$=2$
0	0000	
1	0001	
2	0010	
3	0011	
4	0100	
5	0101	
6	0110	
7	0111	

One's Complement (cont.)

Integer	$\frac{\text { Rep }}{100}$
-6	1001
-5	1010
-4	1011
-3	1100
-2	1101
-1	1110
-0	1111
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110

Computing negative
$\operatorname{neg}(x)=\sim x$

$$
\begin{aligned}
& \operatorname{neg}\left(0101_{B}\right)=1010_{B} \\
& \operatorname{neg}\left(1010_{B}\right)=0101_{B}
\end{aligned}
$$

Computing negative (alternative)
$\operatorname{neg}(x)=1111_{B}-x$

$$
\begin{aligned}
\operatorname{neg}\left(0101_{B}\right) & =1111_{B}-0101_{B} \\
& =1010_{B} \\
\operatorname{neg}\left(1010_{B}\right) & =1111_{B}-1010_{B} \\
& =0101_{B}
\end{aligned}
$$

Pros and cons

+ symmetric
- two reps of zero

Two's Complement

Integer	$\frac{\text { Rep }}{10}$
-7	1001
-6	1010
-5	1011
-4	1100
-3	1101
-2	1110
-1	1111
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111

Definition

High-order bit has weight -8 (-2n)

$$
\begin{aligned}
1010_{B} & =(1 *-8)+(0 * 4)+(1 * 2)+(0 * 1) \\
& =-6 \\
0010_{B} & =(0 *-8)+(0 * 4)+(1 * 2)+(0 * 1) \\
& =2
\end{aligned}
$$

Two's Complement (cont.)

Integer	$\frac{\text { Rep }}{}$
-8	1000
-7	1001
-6	1010
-5	1011
-4	1100
-3	1101
-2	1110
-1	1111
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111

Computing negative
$\operatorname{neg}(x)=\sim x+1$
$\operatorname{neg}(x)=\operatorname{onescomp}(x)+1$
$\operatorname{neg}\left(0101_{B}\right)=1010_{B}+1=1011_{B}$
$\operatorname{neg}\left(1011_{B}\right)=0100_{B}+1=0101_{B}$

Pros and cons

- not symmetric
+ one rep of zero

Two's Complement (cont.)

Almost all computers use two's complement to represent signed integers

Why?

- Arithmetic is easy
- Will become clear soon

Hereafter, assume two's complement representation of signed integers

Two's Complement

- Way to represent positive integers, negative integers, and zero
- If 1 is in the most significant bit (generally leftmost bit in this class), then it is negative

Decimal to Two's Complement

- Example: -5 decimal to binary (twos complement)

Decimal to Two's Complement

- Example:-5 decimal to binary (twos complement)
- First, convert the magnitude to an unsigned representation

Decimal to Two's Complement

- Example:-5 decimal to binary (two's complement)
- First, convert the magnitude to an unsigned representation $5($ decimal $)=0101$ (binary)

Decimal to Two's Complement

- Then, take the bits, and negate them

Decimal to Two's Complement

- Then, take the bits, and negate them

$$
0101
$$

Decimal to Two's Complement

- Then, take the bits, and negate them

$$
\begin{array}{r}
\sim 0101= \\
1010
\end{array}
$$

Decimal to Two's Complement

Finally, add one:

Decimal to Two's Complement

- Finally, add one:

1010

Decimal to Two's Complement

Finally, add one:

$$
\begin{aligned}
& 1010+1= \\
& 1011
\end{aligned}
$$

Two's Complement to Decimal

- Same operation: negate the bits, and add one

Two's Complement to Decimal

- Same operation: negate the bits, and add one 1011

Two's Complement to Decimal

- Same operation: negate the bits, and add one

$$
\begin{array}{r}
\sim 1011= \\
0100
\end{array}
$$

Two's Complement to Decimal

- Same operation: negate the bits, and add one

$$
0100
$$

Two's Complement to Decimal

- Same operation: negate the bits, and add one

$$
\begin{aligned}
& 0100+1= \\
& 0101
\end{aligned}
$$

Two's Complement to Decimal

- Same operation: negate the bits, and add one

Addition

Building Up Addition

- Question: how might we add the following, in decimal?

$$
\begin{array}{r}
986 \\
+123 \\
-\quad-\quad
\end{array}
$$

Building Up Addition

- Question: how might we add the following, in decimal?

$$
\begin{array}{r}
986 \\
+123 \\
---- \\
?
\end{array}
$$

Building Up Addition

- Question: how might we add the following, in decimal?
986
+123

$?$

Building Up Addition

- Question: how might we add the following, in decimal?

$$
\begin{array}{r}
986 \\
+123 \\
---- \\
?
\end{array}
$$

Carry:1

Building Up Addition

- Question: how might we add the following, in decimal?
986
+123

$?$

Building Up Addition

- Question: how might we add the following, in decimal?
986
+123

$?$

Carry: 1
8
+2
--
0

Building Up Addition

- Question: how might we add the following, in decimal?
986
+123

$?$

	1	8	6
1	9	+2	+3
+0	+1	--	--
--	--	0	9
1	1		

Core Concepts

- We have a "primitive" notion of adding single digits, along with an idea of carrying digits
- We can build on this notion to add numbers together that are more than one digit long

Now in Binary

- Arguably simpler - fewer one-bit possibilities

Now in Binary

- Arguably simpler - fewer one-bit possibilities

0	0	1	1
+0	+1	+0	+1
--	--	--	--
0	1	1	0
			Carry:1

Chaining the Carry

- Also need to account for any input carry

0	0	0	0	
0	0		1	1
+0	+1		+0	+1
--	--		--	--
0	1		1	0
1	1		1	Carry: 1
0	0		1	1
+0	+1		+0	1
--	--		--	+-
1	0	Carry: 1	0	Carry: 1
	1 Carry: 1			

Adding Multiple Bits

- How might we add the numbers below?

```
    011
    +001
------
```


Adding Multiple Bits

- How might we add the numbers below?
0
011
+001
$-\quad-\quad-\quad-\quad 1$

Adding Multiple Bits

- How might we add the numbers below?

Adding Multiple Bits

- How might we add the numbers below?

$$
\begin{array}{r}
110 \\
011 \\
+001 \\
-100
\end{array}
$$

Adding Multiple Bits

- How might we add the numbers below?

$$
\begin{array}{r}
0110 \\
011 \\
+001 \\
------ \\
100
\end{array}
$$

Adding Multiple Bits

- How might we add the numbers below?

Another Example

Another Example

Another Example

Another Example

110
111
+001
$-----\quad-1$

Another Example

Output Carry Bit Significance

- For unsigned numbers, it indicates if the result did not fit all the way into the number of bits allotted
- May be an error condition for software

Signed Addition

Question: what isthe result of the following operation?

$$
\begin{array}{r}
011 \\
+011 \\

\end{array}
$$

Signed Addition

Question:what is the result of the following operation?

$$
\begin{array}{r}
011 \\
+011 \\
---- \\
0110
\end{array}
$$

Overflow

- In this situation, overflow occurred: this means that both the operands had the same sign, and the result's sign differed

$$
\begin{array}{r}
011 \\
+011 \\
---- \\
110
\end{array}
$$

- Possibly a software error

Overflow vs. Carry

- These are different ideas
- Carry is relevant to unsigned values
- Overflow is relevant to signed values

111	011	111	001
+001	+011	+100	+001
----	----	----	---
000	110	011	010
No Overflow;	Overflow;	Overflow;	No Overflow;
Carry	No Carry	Carry	No Carry

Adding Signed Integers

neg + neg

	11
-3	1101_{B}
+-2	$+1110_{B}$
--	----
-5	11011_{B}

pos + pos (overflow)

	111
7	0111_{B}
+1	$+0001_{B}$
--	----
-8	1000_{B}

neg + neg (overflow)

	11
-6	1010_{B}
+-5	$+1011_{B}$
--	----
5	10101_{B}

Subtracting Signed Integers

Perform subtraction with borrows

-5	1011_{B}
-2	-0010_{B}
-7	1001_{B}

Compute two's comp and add

Shifting Signed Integers

Bitwise (logical/arithmetic) left shift (<<): fill on right with zeros

$$
\begin{array}{|c|}
\hline 3 \ll 1 \Rightarrow>6 \\
\hline 0011_{B} \\
\hline-3 \ll 110_{B} \\
\hline 1101_{B} \quad 1010_{B} \\
\hline
\end{array}
$$

Shift by $\mathrm{n}=$ multiplying by $2^{\text {n }}$

Bitwise arithmetic right shift: fill on left with sign bit

$$
\begin{gathered}
6 \gg 1 \Rightarrow 3 \\
\hline 0110_{\mathrm{B}} \\
\hline-6 \gg 1 \Rightarrow-3 \\
\hline 1010_{\mathrm{B}} \quad 1101_{\mathrm{B}} \\
\hline
\end{gathered}
$$

Results are mod 2^{4}

Shift by $\mathrm{n}=$ dividing by 2^{n} and Round-floor

Shifting Signed Integers (cont.)

Bitwise logical right shift: fill on left with zeros

$$
\begin{array}{|l}
\hline 6 \gg 1 \Rightarrow 3 \\
\hline 0110_{\mathrm{B}} \quad 0011_{\mathrm{B}} \\
\hline-6 \gg 1 \Rightarrow>5 \\
\hline 1010_{\mathrm{B}} \quad 0101_{\mathrm{B}}
\end{array} \text { ? }
$$

Right shift (>>) could be logical or arithmetic

- Compiler designer decides
- Logical shift is ideal for unsigned binary numbers
- Arithmetic shift is ideal for signed two's complement binary numbers

Other Operations on Signed Ints

Bitwise NOT (~)

- Same as with unsigned ints

Bitwise AND (\&)

- Same as with unsigned ints

Bitwise OR: (|)

- Same as with unsigned ints

Bitwise exclusive OR (^)

- Same as with unsigned ints

Bitwise Operations as Masks

X : it is an unknown binary number and can be either 0 or 1
AND (\&) Operation:

$$
\begin{aligned}
& X \& 0=0 \& X=0 \\
& X \& 1=1 \& X=X \\
& X \& X=X
\end{aligned}
$$

OR (|) Operation:

$$
\begin{aligned}
& X|1=1| X=1 \\
& X|0=0| X=X \\
& X \mid X=X
\end{aligned}
$$

XOR (^) Operation:

$$
\begin{aligned}
& X^{\wedge} 1=1^{\wedge} X=\sim X \\
& X^{\wedge} 0=0^{\wedge} X=X \\
& X^{\wedge} X=0
\end{aligned}
$$

Mask Example

Specify the mask you would need to isolate bit 0 of the unknown number. The result of the operation should be $\mathbf{0}(\mathbf{0 \times 0 0 0 0})$ if bit $\mathbf{0}$ is $\mathbf{0}$, and non-zero if bit $\mathbf{0}$ is $\mathbf{1}$. Express it as a 4-digit hexadecimal number.

Answer:

We know that 1 hexadecimal digit $=4$ bits in binary

In this case, we can use AND operation (\&) and then the mask(16 bits) will be as 0000000000000001 => 0001 in hexadecimal

Therefore, the answer is answer \& as the operation and 0x0001 as the mask.

Mask Example

Specify the mask you would need to set bit 1 of the unknown number to zero. That is, the result of this operation results in a new number, which the unknown number will be subsequently set to. Express it as a 4-digit hexadecimal number.

Answer:

We know that 1 hexadecimal digit $=4$ bits in binary
15... $3210 \leftarrow$ Bit position

XXXX XXXX XXXX XXXX \leftarrow Unknown number
Operation --> ? ???? ???? ???? ???? KMask

In this case, we can use AND operation ($\&$) and then the mask(16 bits) will be as 1111111111111101 => FFFD in hexadecimal

Therefore, the answer is $\&$ as the operation and 0xFFFD as the mask.

Summary

The binary, hexadecimal, and octal number systems
Finite representation of unsigned integers
Finite representation of signed integers

Essential for proper understanding of

- C or Java primitive data types
- Assembly language
- Machine language

